Molecular Organization of the Nanoscale Surface Structures of the Dragonfly Hemianax papuensis Wing Epicuticle

نویسندگان

  • Elena P. Ivanova
  • Song Ha Nguyen
  • Hayden K. Webb
  • Jafar Hasan
  • Vi Khanh Truong
  • Robert N. Lamb
  • Xiaofei Duan
  • Mark J. Tobin
  • Peter J. Mahon
  • Russell J. Crawford
چکیده

The molecular organization of the epicuticle (the outermost layer) of insect wings is vital in the formation of the nanoscale surface patterns that are responsible for bestowing remarkable functional properties. Using a combination of spectroscopic and chromatographic techniques, including Synchrotron-sourced Fourier-transform infrared microspectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS) depth profiling and gas chromatography-mass spectrometry (GCMS), we have identified the chemical components that constitute the nanoscale structures on the surface of the wings of the dragonfly, Hemianax papuensis. The major components were identified to be fatty acids, predominantly hexadecanoic acid and octadecanoic acid, and n-alkanes with even numbered carbon chains ranging from C14 to C30. The data obtained from XPS depth profiling, in conjunction with that obtained from GCMS analyses, enabled the location of particular classes of compounds to different regions within the epicuticle. Hexadecanoic acid was found to be a major component of the outer region of the epicuticle, which forms the surface nanostructures, and was also detected in deeper layers along with octadecanoic acid. Aliphatic compounds were detected throughout the epicuticle, and these appeared to form a third discrete layer that was separate from both the inner and outer epicuticles, which has never previously been reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes of Acuity during Light and Dark Adaptation in the Dragonfly Compound Eye

Intracellular recordings o f angular sensitivity from the photoreceptors o f Aeschnid dragonflies (Hemianax papuensis and Aeschna brevistyla) are used to determine the magnitude and time course o f acuity changes follow ­ ing alterations o f the state o f light or dark adaptation. Acuity is defined on the basis o f the acceptance angle, A q (the half-width o f the angular-sensitivity function)....

متن کامل

Environmental deterioration increases tadpole vulnerability to predation.

Human-induced environmental change is occurring at an unprecedented rate and scale. Many freshwater habitats, in particular, have been degraded as a result of increased salinity. Little is known about the effects of anthropogenic salinization on freshwater organisms, especially at sublethal concentrations, where subtle behavioural changes can have potentially drastic fitness consequences. Using...

متن کامل

O 7: KCNK2 Regulates the Nanoscale Formation of Immune Docking Structures on Brain Endothelial Cells Under Autoinflammatory Conditions

KCNK2 was previously shown to regulate immune-cell trafficking into the central nervous system (CNS). Kcnk2-/- mice demonstrated a more severe disease course in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, due to an increased immune-cell migration into the CNS. An upregulation of the cellular adhesion molecules ICAM1 and VCAM1 on brain endothelial cells in K...

متن کامل

The psychoactive pollutant fluoxetine compromises antipredator behaviour in fish.

Pharmaceuticals are increasingly being detected in aquatic ecosystems worldwide. Particularly concerning are pharmaceutical pollutants that can adversely impact exposed wildlife, even at extremely low concentrations. One such contaminant is the widely prescribed antidepressant fluoxetine, which can disrupt neurotransmission and behavioural pathways in wildlife. Despite this, relatively limited ...

متن کامل

Fabrication of Organic Solar Cells with Branched Cauliflower-Like Nano Structures as a Back Electrode Replicated from a Natural Template of Cicada Wing Patterns

Nanostructures of noble metal materials have been used in organic solar cells for enhancement of performance and light trapping. In this study, we have introduced branched silver cauliflower-like nanopatterns as sub-wavelength structured metal grating in organic solar cells. Self-assembled fabrication process of branched nanopatterns was carried out on a bio-template of cicada wing nanonipple a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013